Introduction:

The hardware abstract layer is the implementation between the computer hardware and the software,
HAL will let us do a lot of hardware specific tasks with simple C calls.

HAL is a system daemon that gets launched at startup level after DBus, because it depends on it, the
library itself is easy to learn just by reading the header files, they are usually under /ustr/include/hal, and
they are two files, one is libhal.h which contains API for general hardware devices properties and the
other is libhal-storage.h contains the API for hardware storage specific tasks.

There are three main concepts that should be explained before start coding:

LibHalContext:

LibHalContext is the HAL context that an application should use to talk to HAL.
UDI:

Unique device identifier, HAL uses associates with each piece of hardware a udi.
Key:

Key is a property that holds a value on a UDI, example a battery device can have the key
"battery is charging" which will be true if the battery is charging false otherwise.

We will start with a simple example that asks HAL for some information about the system that we are
on, to do this, the UDI used here is /org/freedesktop/Hal/devices/computer, see HAL spec for list of
UDI, keys, etc...



http://people.freedesktop.org/~david/hal-spec/hal-spec.html




To compile the above example run the following command:

Finding out a device UDI:

Devices have capabilities in addition to their keys, depending on the capability and the keys attached
with a UDI , we can figure out what is the type of such device, in the following example we will find
out all the input devices.

Same beginning of the example above, so no need to repeat.

HAL callbacks

What about if we want to monitor a specific key on a given device, sure we are not going to ask HAL
about this key every second this is very expensive to, so the HAL API offers callbacks function to
watch system hardware.

Using HAL callbacks, we can register a callback function to be called when a key on a device changes.
With callbacks we have the possibility to monitor one or more devices, or all the devices.

To add a watch function on a specific udi we use:



Here are common general callback functions, self explanatory:

We will use the glib main loop and integrate it with DBus connection using dbus-glib, see DBus
tutorial

hal-callback.c



http://openworld.synthasite.com/dbus1.php
http://openworld.synthasite.com/dbus1.php

Optionally before adding a callback function one can set data attached with HAL context using

And find the data later
- user_data = libhal_ctx_get_user data(ctx);

Compile with the following command:

Invoking HAL method:

In this section we will learn how to invoke an HAL methods, could be a DBus example, but since we
are going to invoke an HAL method i preferred to have it here, to see the available HAL method on the
device "computer" we can run the following command:

First example is how to to ask HAL to put the system in hibernate state.

hibernate.c







Compile the above example as usual with dbus-1 argument for pkg-config, but don't run it unless you
are sure that hibernate works on your system.

Using HAL libhal-storage:

In this section, we will write some code on the "handle device added" function from the hal-callback.c
example in the previous page.

I suppose that the reader have a usb key or hdd, so this will be the device added, actually we are going
just to read some information about the new device added, we are not going to mount/umount the
device.

hal-storage-example.c



http://openworld.synthasite.com/hal1.php

Compile the above example with the following command:

Hopefully you found this small tutorial useful, as usual permission is garanteed

to modify or copy the content of this document under the GNU General Public
License GPL.



